On converse approximation theorems Z Finta Journal of mathematical analysis and applications 312 (1), 159-180, 2005 | 67 | 2005 |
Direct and inverse estimates for Phillips type operators Z Finta, V Gupta Journal of mathematical analysis and applications 303 (2), 627-642, 2005 | 61 | 2005 |
On certain q-Durrmeyer type operators V Gupta, Z Finta Applied mathematics and computation 209 (2), 415-420, 2009 | 55 | 2009 |
Approximation by q-Durrmeyer operators Z Finta, V Gupta Journal of Applied Mathematics and Computing 29, 401-415, 2009 | 54 | 2009 |
Some results on modified Szász–Mirakjan operators Z Finta, NK Govil, V Gupta Journal of mathematical analysis and applications 327 (2), 1284-1296, 2007 | 51 | 2007 |
Approximation properties of q-Baskakov operators Z Finta, V Gupta Central European Journal of Mathematics 8, 199-211, 2010 | 46 | 2010 |
Remark on Voronovskaja theorem for q-Bernstein operators. Z Finta Studia Universitatis Babes-Bolyai, Mathematica 56 (2), 2011 | 29 | 2011 |
Direct results for a certain family of summation–integral type operators HM Srivastava, Z Finta, V Gupta Applied mathematics and computation 190 (1), 449-457, 2007 | 26 | 2007 |
A certain family of mixed summation-integral type operators V Gupta, RN Mohapatra, Z Finta Mathematical and computer modelling 42 (1-2), 181-191, 2005 | 25 | 2005 |
On approximation properties of Stancu’s operators Z Finta Stud. Univ. Babes-Bolyai Math 47 (4), 4, 2002 | 23 | 2002 |
A quantitative variant of Voronovskaja's theorem for King-type operators Z Fınta Constructive Mathematical Analysis 2 (3), 124-129, 2019 | 22 | 2019 |
Bivariate q-Bernstein-Schurer-Kantorovich Operators PN Agrawal, Z Finta, AS Kumar Results in Mathematics 67, 365-380, 2015 | 21 | 2015 |
Bernstein–Schurer–Kantorovich operators based on q-integers PN Agrawal, Z Finta, AS Kumar Applied Mathematics and Computation 256, 222-231, 2015 | 21 | 2015 |
Direct and converse results for Stancu operator Z Finta Periodica Mathematica Hungarica 44 (1), 1-6, 2002 | 20 | 2002 |
Bernstein type operators having 1 and x j as fixed points Z Finta Open Mathematics 11 (12), 2257-2261, 2013 | 17 | 2013 |
Quantitative estimates for some linear and positive operators Z Finta Studia Univ. Babes-Bolyai 47 (3), 71-84, 2002 | 14 | 2002 |
Approximation properties of (p, q)-Bernstein type operators Z Finta Acta Universitatis Sapientiae, Mathematica 8 (2), 222-232, 2016 | 12 | 2016 |
Direct local and global approximation theorems for some linear positive operators Z Finta Analysis in Theory and Applications 20, 307-322, 2004 | 10 | 2004 |
Note on a Korovkin-type theorem Z Finta Journal of Mathematical Analysis and Applications 415 (2), 750-759, 2014 | 9 | 2014 |
Pointwise approximation by generalized Szász-Mirakjan operators Z Finta Stud. Univ. Babes-Bolyai Math 46 (4), 61-67, 2001 | 9 | 2001 |