Coronary artery disease diagnosis; ranking the significant features using a random trees model JH Joloudari, E Hassannataj Joloudari, H Saadatfar, M Ghasemigol, ... International journal of environmental research and public health 17 (3), 731, 2020 | 161 | 2020 |
Application of artificial intelligence techniques for automated detection of myocardial infarction: a review JH Joloudari, S Mojrian, I Nodehi, A Mashmool, ZK Zadegan, ... Physiological Measurement 43 (8), 08TR01, 2022 | 27 | 2022 |
GSVMA: a genetic support vector machine ANOVA method for CAD diagnosis J Hassannataj Joloudari, F Azizi, MA Nematollahi, R Alizadehsani, ... Frontiers in cardiovascular medicine 8, 760178, 2022 | 22 | 2022 |
DNN-GFE: a deep neural network model combined with global feature extractor for COVID-19 diagnosis based on CT scan images JH Joloudari, F Azizi, I Nodehi, MA Nematollahi, F Kamrannejhad, ... Easychair. Manchester, 2021 | 20 | 2021 |
FCM-DNN: diagnosing coronary artery disease by deep accuracy fuzzy C-means clustering model JH Joloudari, H Saadatfar, M GhasemiGol, R Alizadehsani, ZA Sani, ... arXiv preprint arXiv:2202.04645, 2022 | 11 | 2022 |
A survey of applications of artificial intelligence for myocardial infarction disease diagnosis JH Joloudari, S Mojrian, I Nodehi, A Mashmool, ZK Zadegan, ... arXiv preprint arXiv: 2107.06179, 2021 | 5 | 2021 |
Developing a Deep Neural Network model for COVID-19 diagnosis based on CT scan images JH Joloudari, F Azizi, I Nodehi, MA Nematollahi, F Kamrannejhad, ... Mathematical Biosciences and Engineering 20 (9), 16236-16258, 2023 | 1 | 2023 |
Coronary Artery Disease Diagnosis: Ranking the Significant Features Using a Random Trees Model J Hassannataj Joloudari, E Hassannataj Joloudari, H Saadatfar, ... | | 2020 |