Rethinking network design and local geometry in point cloud: A simple residual MLP framework X Ma, C Qin, H You, H Ran, Y Fu arXiv preprint arXiv:2202.07123, 2022 | 692 | 2022 |
Pointdan: A multi-scale 3d domain adaption network for point cloud representation C Qin, H You, L Wang, CCJ Kuo, Y Fu Advances in Neural Information Processing Systems 32, 2019 | 246 | 2019 |
Neural pruning via growing regularization H Wang, C Qin, Y Zhang, Y Fu arXiv preprint arXiv:2012.09243, 2020 | 176 | 2020 |
Face recognition: too bias, or not too bias? JP Robinson, G Livitz, Y Henon, C Qin, Y Fu, S Timoner Proceedings of the ieee/cvf conference on computer vision and pattern …, 2020 | 150 | 2020 |
Self-directed online machine learning for topology optimization C Deng, Y Wang, C Qin, Y Fu, W Lu Nature communications 13 (1), 388, 2022 | 99 | 2022 |
Unicontrol: A unified diffusion model for controllable visual generation in the wild C Qin, S Zhang, N Yu, Y Feng, X Yang, Y Zhou, H Wang, JC Niebles, ... arXiv preprint arXiv:2305.11147, 2023 | 98 | 2023 |
Semi-supervised hyperspectral image classification via spatial-regulated self-training Y Wu, G Mu, C Qin, Q Miao, W Ma, X Zhang Remote Sensing 12 (1), 159, 2020 | 91 | 2020 |
Hive: Harnessing human feedback for instructional visual editing S Zhang, X Yang, Y Feng, C Qin, CC Chen, N Yu, Z Chen, H Wang, ... Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024 | 90 | 2024 |
Context reasoning attention network for image super-resolution Y Zhang, D Wei, C Qin, H Wang, H Pfister, Y Fu Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021 | 87 | 2021 |
Recent advances on neural network pruning at initialization H Wang, C Qin, Y Bai, Y Zhang, Y Fu arXiv preprint arXiv:2103.06460, 2021 | 77 | 2021 |
Image as set of points X Ma, Y Zhou, H Wang, C Qin, B Sun, C Liu, Y Fu arXiv preprint arXiv:2303.01494, 2023 | 70 | 2023 |
Contradictory Structure Learning for Semi-supervised Domain Adaptation C Qin, L Wang, Q Ma, Y Yin, H Wang, Y Fu Society for Industrial and Applied Mathematics, 2020 | 63 | 2020 |
Aligned structured sparsity learning for efficient image super-resolution Y Zhang, H Wang, C Qin, Y Fu Advances in Neural Information Processing Systems 34, 2695-2706, 2021 | 61 | 2021 |
Learning efficient image super-resolution networks via structure-regularized pruning Y Zhang, H Wang, C Qin, Y Fu International conference on learning representations, 2021 | 59 | 2021 |
Dual relation semi-supervised multi-label learning L Wang, Y Liu, C Qin, G Sun, Y Fu Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 6227-6234, 2020 | 50 | 2020 |
Emerging paradigms of neural network pruning H Wang, C Qin, Y Zhang, Y Fu arXiv preprint arXiv:2103.06460 8, 2021 | 44 | 2021 |
xgen-mm (blip-3): A family of open large multimodal models L Xue, M Shu, A Awadalla, J Wang, A Yan, S Purushwalkam, H Zhou, ... arXiv preprint arXiv:2408.08872, 2024 | 40 | 2024 |
Generatively inferential co-training for unsupervised domain adaptation C Qin, L Wang, Y Zhang, Y Fu Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2019 | 34 | 2019 |
Semi-supervised dual relation learning for multi-label classification L Wang, Y Liu, H Di, C Qin, G Sun, Y Fu IEEE Transactions on Image Processing 30, 9125-9135, 2021 | 29 | 2021 |
Balancing biases and preserving privacy on balanced faces in the wild JP Robinson, C Qin, Y Henon, S Timoner, Y Fu IEEE Transactions on Image Processing, 2023 | 28 | 2023 |